Characterization and spontaneous mutation of a novel gene, polE, involved in pellicle formation in Acetobacter tropicalis SKU1100

Author:

Deeraksa Arpaporn1,Moonmangmee Somporn2,Toyama Hirohide1,Yamada Mamoru1,Adachi Osao1,Matsushita Kazunobu1

Affiliation:

1. Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan

2. Department of Biotechnology, Thailand Institute of Scientific and Technological Research, Khlong Luang, Pathumthani 12120, Thailand

Abstract

Acetobacter tropicalis SKU1100 produces a pellicle polysaccharide, consisting of galactose, glucose and rhamnose, which attaches to the cell surface. This strain forms two types of colony on agar plates: a rough-surfaced colony (R strain) and a mucoid smooth-surfaced colony (S strain). The R strain forms a pellicle, allowing it to float on the medium surface in static culture, while the S strain does not. The pellicle is an assemblage of cells which are tightly associated with capsular polysaccharides (CPS) on the cell surface. In this study, a gene required for pellicle formation by the R strain was investigated by transposon mutagenesis using Tn10. The resulting mutant, designated Pel, has a smooth-surfaced colony and a defect in pellicle formation, as for the S strain. The mutant produced polysaccharide which was instead secreted into the culture medium as extracellular polysaccharide (EPS). An ORF was identified at the Tn10 insertion site, designated polE, upstream of which polABCD genes were also found. The deduced amino acid sequences of polABCD showed a high level of homology to those of rfbBACD which are involved in dTDP-rhamnose synthesis, whereas polE had a relatively low level of homology to glycosyltransferase. In this study a polB (rfbA) disruptant was also prepared, which lacked both CPS and EPS production. A plasmid harbouring the polE or polB genes could restore pellicle formation in the Pel mutant and S strains, and in the ΔpolB mutant, respectively. Thus both polE and polB are evidently involved in pellicle formation, most likely by anchoring polysaccharide to the cell surface and through the production of dTDP-rhamnose, respectively. The Pel and ΔpolB mutants were unable to grow in static culture and became more sensitive to acetic acid due to the loss of pellicle formation. Additionally, this study identified the mutation sites of several S strains which were spontaneously isolated from the original culture and found them to be concentrated in a sequence of 7 C residues in the coding sequence of polE, with the deletion or addition of a single C nucleotide.

Publisher

Microbiology Society

Subject

Microbiology

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3