Role of the Escherichia coli nitrate transport protein, NarU, in survival during severe nutrient starvation and slow growth

Author:

Clegg Stephanie J.1,Jia Wenjing1,Cole Jeffrey A.1

Affiliation:

1. School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK

Abstract

Escherichia coli K-12 strains expressing either NarU or NarK as the only nitrate transport protein are both able to support nitrate-dependent anaerobic growth. The narK gene is highly expressed during anaerobic growth in the presence of nitrate, consistent with a role for NarK in nitrate transport coupled to nitrate reduction by the most active nitrate reductase encoded by the adjacent narGHJI operon. The physiological role of NarU is unknown. Reverse transcriptase PCR experiments established that, unlike the monocistronic narK gene, narU is co-transcribed with narZ as the first gene of a five-gene narUZYWV operon. The narK and narU genes were fused in-frame to a myc tag: the encoded fusion proteins complemented the nitrate-dependent growth defect of chromosomal narK and narU mutations. A commercial anti-Myc antibody was used to detect NarK and NarU in membrane fractions. During anaerobic growth in the presence of nitrate, the quantity of NarU-Myc accumulated during exponential growth was far less than that of NarK-Myc, but NarU was more abundant than NarK in stationary-phase cultures in the absence of nitrate. Although the concentration of NarU-Myc increased considerably during the post-exponential phase of growth, NarK-Myc was still more abundant than NarU-Myc in stationary-phase bacteria in the presence of nitrate. In chemostat competition experiments, a strain expressing only narU had a selective advantage relative to a strain expressing only narK during nutrient starvation or very slow growth, but NarK+ bacteria had a much greater selective advantage during rapid growth. The data suggest that NarU confers a selective advantage during severe nutrient starvation or slow growth, conditions similar to those encountered in vivo.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3