Characterization and genomics identification of key genes involved in denitrification-DNRA-nitrification pathway of plant growth-promoting rhizobacteria (Serratia marcescens OK482790)

Author:

Hamada Marwa A.ORCID,Soliman Elham R. S.ORCID

Abstract

Abstract Background A wide variety of microorganisms, including bacteria, live in the rhizosphere zone of plants and have an impact on plant development both favorably and adversely. The beneficial outcome is due to the presence of rhizobacteria that promote plant growth (PGPR). Results In this study, a bacterial strain was isolated from lupin rhizosphere and identified genetically as Serratia marcescens (OK482790). Several biochemically and genetically characteristics were confirmed in vitro and in vivo to determine the OK482790 strain ability to be PGPR. The in vitro results revealed production of different lytic enzymes (protease, lipase, cellulase, and catalase), antimicrobial compounds (hydrogen cyanide, and siderophores), ammonia, nitrite, and nitrate and its ability to reduce nitrate to nitrite. In silico and in vitro screening proposed possible denitrification-DNRA-nitrification pathway for OK482790 strain. The genome screening indicated the presence of nitrite and nitrate genes encoding Nar membrane bound sensor proteins (NarK, NarQ and NarX). Nitrate and nitrite reductase encoding genes (NarI, NarJ, NarH, NarG and NapC/NirT) and (NirB, NirC, and NirD) are also found in addition to nitroreductases (NTR) and several oxidoreductases. In vivo results on wheat seedlings confirmed that seedlings growth was significantly improved by soil inoculation of OK482790 strain. Conclusions This study provides evidence for participation of S. marcescens OK482790 in nitrogen cycling via the denitrification-DNRA-nitrification pathway and for its ability to produce several enzymes and compounds that support the beneficial role of plant-microbe interactions to sustain plant growth and development for a safer environment.

Funder

Helwan University

Publisher

Springer Science and Business Media LLC

Subject

Microbiology (medical),Microbiology

Reference66 articles.

1. Saeed Q, Xiukang W, Haider FU, Kučerik J, Mumtaz MZ, Holatko J et al. Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: a comprehensive review of effects and mechanisms. Int J Mol Sci. 2021;22.

2. Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, et al. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci. 2018;871:1–17.

3. Santoyo G, Urtis-Flores CA, Loeza-Lara PD, Orozco-Mosqueda MDC, Glick BR. Rhizosphere colonization determinants by Plant Growth-Promoting Rhizobacteria (PGPR). Biology (Basel). 2021. 10.

4. Mahdi I, Allaoui A, Fahsi N, Biskri L. Bacillus velezensis QA2 potentially Induced Salt stress tolerance and enhanced phosphate uptake in Quinoa plants. Microorganisms. 2022;10.

5. Nosheen S, Ajmal I, Song Y. Microbes as biofertilizers, a potential approach for sustainable crop production. Sustain (Switzerland). 2021;13:1–20.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3