Identification of Vibrio campbellii isolated from diseased farm-shrimps from south India and establishment of its pathogenic potential in an Artemia model

Author:

Haldar Soumya1,Chatterjee Shruti1,Sugimoto Norihiko21,Das Surajit3,Chowdhury Nityananda1,Hinenoya Atsushi1,Asakura Masahiro21,Yamasaki Shinji1

Affiliation:

1. Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan

2. Research and Development Centre, Fuso Pharmaceutical Industries Ltd, Osaka, Japan

3. CAS in Marine Biology, Annamalai University, Tamilnadu, India

Abstract

Shrimp diseases are frequently reported to be caused by closely related vibrios, and in many cases they are tentatively but inaccurately identified as Vibrio harveyi and related vibrios. In the present study, 28 biochemically identified V. harveyi-related strains isolated from diseased shrimps were randomly selected for further characterization by molecular tools. Twenty-six strains were identified as Vibrio campbellii and two as V. harveyi by sequence analysis of 16S rRNA and uridylate kinase genes. Haemolysin-gene-based species-specific multiplex PCR also confirmed these results. Experimental challenge studies using Artemia as a model showed that eight isolates were highly pathogenic, three were moderately pathogenic and the remaining 17 were non-pathogenic. Ribotyping with BglI clearly distinguished V. campbellii from V. harveyi, but it failed to separate pathogenic and non-pathogenic clusters. Artemia nauplii challenged with a fluorescently labelled highly pathogenic strain (IPEY54) showed patches in the digestive tract. However, no patches were observed for a non-pathogenic strain (IPEY41). Direct bacterial counts also supported colonization potential for the highly pathogenic strain. To our knowledge, this is the first report on the isolation and accurate identification of large numbers of V. campbellii associated with shrimp disease in aquacultural farms. V. campbellii has long been considered to be non-pathogenic and classified with V. harveyi-related bacteria. However, we show that this species may be an emerging aquaculture pathogen. This study will help to formulate suitable strategies to combat this newly identified pathogen.

Publisher

Microbiology Society

Subject

Microbiology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3