Sphingomonas lycopersici sp. nov., isolated from tomato rhizosphere soil

Author:

Gao Ruixiang12,Dong Honghong2,Liu Yang2,Yao Qing3,Li Huaping1,Zhu Honghui2ORCID

Affiliation:

1. College of Plant Protection, South China Agricultural University, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou 510642, PR China

2. Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China

3. College of Horticulture, South China Agricultural University, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou 510642, PR China

Abstract

Two aerobic, Gram-stain-negative, non-motile and non-spore-forming rods bacterial strains, designated MMSM20T and MMSM24, were isolated from tomato rhizosphere soil and could produce indole-3-acetic acid and siderophore. Phylogenetic analyses based on 16S rRNA gene sequences and 92 core genes showed that strains MMSM20T and MMSM24 belonged to the genus Sphingomonas and were most closely related to three validly published species Sphingomonas jeddahensis G39T, Sphingomonas mucosissima DSM 17494T and Sphingomonas dokdonensis DSM 21029T. The average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) values between strains MMSM20T and MMSM24 were 97.6 and 81.0 %, respectively, demonstrating that they were conspecific. The ANI and dDDH values between the two strains and the three type strains above were below the threshold values for species delimitation. The genomic DNA G+C contents of strains MMSM20T and MMSM24 were 66.6 and 66.4 mol%, respectively. The major fatty acids of the two strains were identified as C14 : 0 2OH, summed feature 8 (C18 : 1  ω7c and/or C18 : 1  ω6c); the predominant quinone was ubiquinone 10; the polar lipids comprised diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, sphingoglycolipid and unidentified lipids. Results of phenotypic and genotypic analyses supported that strains MMSM20T and MMSM24 represent a novel species of the genus Sphingomonas , for which the name Sphingomonas lycopersici sp. nov. is proposed. The type strain is MMSM20T (=GDMCC 1.3401T=JCM 35647T).

Funder

National Natural Science Foundation of China

The Guangdong Strategic Special Fund for Rural Revitalization

Guangdong Special Support Plan

GDAS’ Project of Science and Technology Development

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3