Transcriptome response to different carbon sources in Acetobacter aceti

Author:

Sakurai Kenta1,Arai Hiroyuki1,Ishii Masaharu1,Igarashi Yasuo1

Affiliation:

1. Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan

Abstract

The draft genome sequence of Acetobacter aceti NBRC 14818 was determined by whole-genome shotgun sequencing and the transcriptome profile in cells exponentially grown on ethanol, acetate or glucose was analysed by using a DNA microarray. The genes for all enzymes that constitute the complete tricarboxylic acid (TCA) cycle and glyoxylate pathway were identified in the genome. The TCA cycle genes showed higher expression levels in A. aceti cells grown on acetate or glucose and the glyoxylate pathway genes were significantly induced by ethanol or acetate. Many SOS-response genes were upregulated in cells grown on ethanol, indicating that ethanol provoked damage of DNA and proteins. The superoxide dismutase and catalase genes showed high expression levels in culture on glucose, indicating that oxidation of glucose induced oxidative stress. A. aceti NBRC 14818 was found to have a highly branched respiratory chain. The genes for two type I and one type II NADH dehydrogenase were identified. The genes for one of the type I enzymes were highly expressed when cells were grown on acetate or glucose, but were significantly downregulated in culture on ethanol, probably because ubiquinones were directly reduced by pyrroloquinoline quinone-dependent alcohol dehydrogenase. Four sets of the genes for quinol oxidases, one bo 3-type (BO3), one bd-type and two cyanide-insensitive-types (CIOs), were identified in the genome. The genes for BO3, which might have proton-pumping activity, were highly expressed under the conditions tested, but were downregulated in the glucose culture. In contrast, the genes for one of the CIOs were significantly upregulated in cells grown on glucose. The two CIOs, which are expected to have lower energy-coupling efficiency, seemed to have a higher contribution in glucose-grown cells. These results indicate that energy conservation efficiency is fine-tuned by changing the respiratory components according to the growth conditions in A. aceti cells.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3