Aminoglycoside resistance in Pseudomonas aeruginosa: the contribution of the MexXY-OprM efflux pump varies between isolates

Author:

Thacharodi Aswin1ORCID,Lamont Iain L.1ORCID

Affiliation:

1. Department of Biochemistry, University of Otago, Dunedin, New Zealand

Abstract

Introduction. Aminoglycoside antibiotics are widely used to treat infections of Pseudomonas aeruginosa . The MexXY-OprM efflux pump is an important contributor to aminoglycoside tolerance in P. aeruginosa reference strains and expression of the mexXY genes is repressed by the MexZ repressor protein. Direct investigation of the role of this efflux pump in clinical isolates is relatively limited. Hypothesis. The contribution of MexXY-OprM to P. aeruginosa aminoglycoside resistance is isolate-specific. Aim. To quantify the role of MexXY-OprM and its repressor, MexZ, in clinical isolates of P. aeruginosa. Methodology. The mexXY genes were deleted from ten clinical isolates of P. aeruginosa , and the mexZ gene from nine isolates. Antimicrobial susceptibility testing was carried out for commonly used antipseudomonal drugs on the engineered mutants and the isogenic wild-type isolates. RT-qPCR was used to measure expression of the mexX gene. Results. All but one of the mexXY mutants were more susceptible to the clinically used aminoglycosides tobramycin, gentamicin and amikacin but the degree to which susceptibility increased varied greatly between isolates. The mexXY mutants were also more susceptible to a fluoroquinolone, ciprofloxacin. In three isolates with functional MexZ, deletion of mexZ increased expression of mexXY and aminoglycoside tolerance. Conversely, deleting mexZ from six clinical isolates with mexZ sequence variants had little or no effect on expression of mexXY or on aminoglycoside susceptibility, consistent with the variants abolishing MexZ function. Genome analysis showed that over 50 % of 619 clinical isolates had sequence variants predicted to reduce the affinity of MexZ for DNA, likely increasing mexXY expression and hence efflux of aminoglycosides. Conclusion. Our findings show that the interplay between MexXY, MexZ and the level of mexXY expression plays an important role in aminoglycoside resistance in clinical isolates of P. aeruginosa but the magnitude of the contribution of this efflux pump to resistance is isolate-specific.

Funder

Health Research Council of New Zealand

University of Otago

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3