Molecular determinant deciphering of MIC-guided RND efflux substrates in E. coli

Author:

Revol-Tissot Johan,Boyer Gérard,Alibert Sandrine

Abstract

Antimicrobial resistance poses an urgent and formidable global public health threat. The escalation of bacterial multidrug resistance to antibiotics has the potential to become a leading cause of global mortality if there is no substantial improvement in antimicrobial development and therapy protocols. In light of this, it is imperative to identify the molecular determinants responsible for the reduced antibiotic activity associated with RND efflux pumps. This comprehensive study meticulously examines Minimum Inhibitory Concentration (MIC) data obtained from in vitro tests for various antibiotic families and non-active dye compounds, sourced from diverse literature references. The primary focus of this study is to assess the susceptibility of these agents to efflux-resistant Escherichia coli strains, integrating both MIC data and relevant physicochemical properties. The central objective is to unveil the specific substituents that significantly influence the uptake process mediated by the AcrAB-TolC efflux system. This exploration seeks to reveal the consequences of these substituents on pharmacodynamic responses, providing valuable insights into Structure-Activity Relationships. It is noteworthy that this analysis represents a pioneering effort, with prospective implications for RND efflux pump-producing strains. Ultimately, deciphering efflux markers is crucial to effectively mitigate the emergence of specific resistance and to better monitor the role of this primary resistance mechanism in Gram-negative bacteria, particularly as observed in clinical antibiotic therapy practice.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3