Bradyrhizobium commune sp. nov., isolated from nodules of a wide range of native legumes across the Australian continent

Author:

Lafay Bénédicte1ORCID,Coquery Elina21,Oger Philippe M.2ORCID

Affiliation:

1. Laboratoire de Biométrie et Biologie Évolutive, Université de Lyon, Université Claude Bernard, Lyon1, CNRS, UMR5558, Villeurbanne, France

2. Université de Lyon, INSA de Lyon, Villeurbanne, CNRS, UMR5240, France

Abstract

Bradyrhizobia are particularly abundant in Australia, where they nodulate native legumes growing in the acidic and seasonally dry soils that predominate in these environments. They are essential to Australian ecosystems by helping legumes to compensate for nutrient deficiencies and the low fertility of Australian soils. During a survey of Australian native rhizobial communities in 1994–1995, several Bradyrhizobium genospecies were identified, among which genospecies B appeared to be present in various edaphic and climatic conditions and associate with a large range of leguminous hosts across the whole continent. We took advantage of the recent sequencing of the genome of strain BDV5040T, representative of Bradyrhizobium genospecies B, to re-evaluate the taxonomic status of this lineage. We further characterized strain BDV5040T based on morpho-physiological traits and determined its phylogenetic relationships with the type strains of all currently described Bradyrhizobium species using both small subunit (SSU) rRNA gene and complete genome sequences. The digital DNA–DNA hybridization relatedness with any type strain was less than 35 % and both SSU rRNA gene and genome phylogenies confirmed the initial observation that this strain does not belong to any formerly described species within the genus Bradyrhizobium . All data thus support the description of the novel species Bradyrhizobium commune sp. nov. for which the type strain is BDV5040T (=CFBP 9110T=LMG 32898T), isolated from a nodule of Bossiaea ensata in Ben Boyd National Park in New South Wales, Australia.

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3