Labrys soli sp. nov., isolated from the rhizosphere of ginseng

Author:

Nguyen Ngoc-Lan1,Kim Yeon-Ju1,Hoang Van-An1,Kang Jong-Pyo1,Wang Chao1,Zhang Jinglou2,Kang Chang-Ho3,Yang Deok-Chun21

Affiliation:

1. Department of Oriental Medicinal Biotechnology, Kyung Hee University, Seocheon-dong, Giheung-gu Yongin-si, Gyeonggi-do, Republic of Korea

2. Graduate School of Biotechnology and Ginseng Bank, College of Life Sciences, Kyung Hee University, Seocheon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, Republic of Korea

3. Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, JinJu-si, Gyeongsangnam-do, Republic of Korea

Abstract

In this study, we describe strain DCY64T that was isolated from the rhizosphere of three-year-old Korean ginseng root. Cells were Gram-reaction negative, oxidase- and catalase-positive, strictly aerobic, capsulated, non-motile, non-sporulating and spherical to short rod-shaped. Multiplicative budding cells were produced. Vesicles covered the surface of cells. Phylogenetic analysis placed strain DCY64T within the genus Labrys with the highest similarity to Labrys monachus VKM B-1479T (97.6 % 16S rRNA gene sequence similarity), followed by Labrys okinawensis MAFF 210191T (97.5 %), Labrys miyagiensis G24103T (97.4) and Labrys portucalensis F11T (97.0 %). The genomic DNA G+C content was 63 mol%. The presences of summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), C19 : 1 cyclo ω8c and C16 : 0 as major fatty acids; phosphatidylmonomethylethanolamine, phosphatidylglycerol, phosphatidylcholine and diphosphatidylglycerol as major polar lipids; ubiquinone Q-10 as the predominant quinone and sym-homospermidine as the dominant polyamine were found in strain DCY64T. These chemotaxonomic results were in accordance with those of members of the genus Labrys. However, the absence of C16 : 0 2-OH, C16 : 0 3-OH and C18 : 1 2-OH from the fatty acids profile and differences in minor polar lipids and phenotypic characteristics distinguished strain DCY64T from the closest type strains. The discrimination was also supported by unique enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR) fingerprints, as well as DNA–DNA hybridization values ( ≤ 48 %) between strain DCY64T and related type strains. Therefore, we propose that strain DCY64T represents a novel species of the genus Labrys. The name Labrys soli sp. nov. is proposed, with DCY64T ( = KCTC 32173T = JCM 19895T) as the type strain.

Funder

Next-Generation BioGreen 21 Program

Publisher

Microbiology Society

Subject

General Medicine,Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3