Definition of Core Bacterial Taxa in Different Root Compartments of Dactylis glomerata, Grown in Soil under Different Levels of Land Use Intensity

Author:

Estendorfer Jennifer,Stempfhuber Barbara,Vestergaard GisleORCID,Schulz Stefanie,Rillig MatthiasORCID,Joshi JasminORCID,Schröder PeterORCID,Schloter MichaelORCID

Abstract

Plant-associated bacterial assemblages are critical for plant fitness. Thus, identifying a consistent plant-associated core microbiome is important for predicting community responses to environmental changes. Our target was to identify the core bacterial microbiome of orchard grass Dactylis glomerata L. and to assess the part that is most sensitive to land management. Dactylis glomerata L. samples were collected from grassland sites with contrasting land use intensities but comparable soil properties at three different timepoints. To assess the plant-associated bacterial community structure in the compartments rhizosphere, bulk soil and endosphere, a molecular barcoding approach based on high throughput 16S rRNA amplicon sequencing was used. A distinct composition of plant-associated core bacterial communities independent of land use intensity was identified. Pseudomonas, Rhizobium and Bradyrhizobium were ubiquitously found in the root bacterial core microbiome. In the rhizosphere, the majority of assigned genera were Rhodoplanes, Methylibium, Kaistobacter and Bradyrhizobium. Due to the frequent occurrence of plant-promoting abilities in the genera found in the plant-associated core bacterial communities, our study helps to identify “healthy” plant-associated bacterial core communities. The variable part of the plant-associated microbiome, represented by the fluctuation of taxa at the different sampling timepoints, was increased under low land use intensity. This higher compositional variation in samples from plots with low land use intensity indicates a more selective recruitment of bacteria with traits required at different timepoints of plant development compared to samples from plots with high land use intensity.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modelling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3