Multi-Robot Coordination in Complex Environment with Task and Communication Constraints

Author:

Liu Yabo1,Yang Jianhua2,Zheng Yao1,Wu Zhaohui23,Yao Min3

Affiliation:

1. School of Aeronautics and Astronautics, Zhejiang University, P. R. China

2. The Sci-Tech Academy, Zhejiang University, P. R. China

3. College of Computer Science and Technology, Zhejiang University, P. R. China

Abstract

Abstract The tasks would fail to be assigned to any robots in the task allocation phase as a consequence of the inherent communication constraints in multi-robot systems (MRS). This negative effect becomes even more serious in tasks with temporal constraints. We therefore propose the constraint-based approach (CoBA), a market-based task allocation approach to enable multi-robot coordination in domains with temporal constraints between subtasks of a complex task and network constraints between robots. We handle network constraints by having each robot maintain a dynamic acquaintance network of robots that it knows about, and allowing a robot to submit a bid on behalf of another robot during a task auction (“indirect bidding”). In order to model the complex task, we introduce the AND/OR task tree with temporal constraints. An auction-clearing routine, which supports the AND/OR task tree with temporal constraints and direct/indirect task auction, is proposed to enable effective multi-robot task allocation in spite of various constraints. The solution was validated in both simulation and physical environments by a series of experiments in disaster response domains. Specifically, we study the system performance by separately varying the number of robots, the expected rate of task issuance, the communication reliability factor, the compositions of MRS, as well as the acquaintance relationship parameter, in simulation experiments. The results suggest that our solution outperforms others, that is, robots were able to complete the tasks more promptly and effectively.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3