Affiliation:
1. State Key Laboratory of Industrial Contol Technology, Zhejiang University, Hangzhou, China
2. Institue of Cyber-Systems and Control, Zhejiang University, Hangzhou, China
Abstract
Pose estimation methods in robotics applications frequently suffer from inaccuracy due to a lack of correspondence and real-time constraints, and instability from a wide range of viewpoints, etc. In this paper, we present a novel approach for estimating the poses of all the cameras in a multi-camera system in which each camera is placed rigidly using only a few coplanar points simultaneously. Instead of solving the orientation and translation for the multi-camera system from the overlapping point correspondences among all the cameras directly, we employ homography, which can map image points with 3D coplanar-referenced points. In our method, we first establish the corresponding relations between each camera by their Euclidean geometries and optimize the homographies of the cameras; then, we solve the orientation and translation for the optimal homographies. The results from simulations and real case experiments show that our approach is accurate and robust for implementation in robotics applications. Finally, a practical implementation in a ping-pong robot is described in order to confirm the validity of our approach.
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献