Author:
Kumar Sudhir,Purkyastha Shampa,Roy Chandan,Ranjan Tushar,Deo Ranjan Rakesh
Abstract
In the recent past years, global warming and climate change have drastically affected the agricultural crop productivity grown in tropical and subtropical areas globally by appearing to several new biotic and abiotic stresses. Among the abiotic stresses, heat, drought, moisture, and salt stresses are most prevalent. Wheat is the most common and widely used crops due to its economic and social values. Many parts of the world depend on this crop for food and feed, and its productivity is highly vulnerable to these abiotic stresses. Improving tolerance to these abiotic stresses is a very challenging assignment for wheat researchers, and more research is needed to better understand these stresses. The progress made in understanding these abiotic stress tolerances is due to advances in three main research areas: physiology, genetic, and breeding research. The physiology research focused on the alternative physiological and biochemical metabolic pathways that plants use when exposed to abiotic stresses. Identifying genes contributing to particular stress tolerance is very important. New wheat genotypes having a high degree of abiotic stress tolerance are produced through marker-assisted breeding by making crosses from promising concerned stress-tolerant genotypes and selecting among their progeny using gene-specific markers.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献