Physics of Absorption and generation of Electromagnetic Radiation

Author:

Singh Sukhmander,Tyagi Ashish,Vidhani Bhavna

Abstract

The chapter is divided into two parts. In the first part, the chapter discusses the theory of propagation of electromagnetic waves in different media with the help of Maxwell’s equations of electromagnetic fields. The electromagnetic waves with low frequency are suitable for the communication in sea water and are illustrated with numerical examples. The underwater communication have been used for the oil (gas) field monitoring, underwater vehicles, coastline protection, oceanographic data collection, etc. The mathematical expression of penetration depth of electromagnetic waves is derived. The significance of penetration depth (skin depth) and loss angle are clarified with numerical examples. The interaction of electromagnetic waves with human tissue is also discussed. When an electric field is applied to a dielectric, the material takes a finite amount of time to polarize. The imaginary part of the permittivity is corresponds to the absorption length of radiation inside biological tissue. In the second part of the chapter, it has been shown that a high frequency wave can be generated through plasma under the presence of electron beam. The electron beam affects the oscillations of plasma and triggers the instability called as electron beam instability. In this section, we use magnetohydrodynamics theory to obtain the modified dispersion relation under the presence of electron beam with the help of the Poisson’s equation. The high frequency instability in plasma grow with the magnetic field, wave length, collision frequency and the beam density. The growth rate linearly increases with collision frequency of electrons but it is decreases with the drift velocity of electrons. The real frequency of the instability increases with magnetic field, azimuthal wave number and beam density. The real frequency is almost independent with the collision frequency of the electrons.

Publisher

IntechOpen

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introductory Chapter: Recent Advances in Plasmas Physics;Plasma Science - Recent Advances, New Perspectives and Applications;2023-07-12

2. Plasma Waves and Rayleigh–Taylor Instability: Theory and Application;Plasma Science - Recent Advances, New Perspectives and Applications;2023-07-12

3. Graphene Saturable Absorber Mirror for Passive Mode-locking of Mid-Infrared QCLs;2022-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3