Plasma Waves and Rayleigh–Taylor Instability: Theory and Application

Author:

Singh Sukhmander,Vidhani Bhavna,Yogi Sonia,Tyagi Ashish,Kumar Sanjeev,Kumar Meena Shravan

Abstract

The presence of plasma density gradient is one of the main sources of Rayleigh–Taylor instability (RTI). The Rayleigh–Taylor instability has application in meteorology to explain cloud formations and in astrophysics to explain finger formation. It has wide applications in the inertial confinement fusion to determine the yield of the reaction. The aim of the chapter is to discuss the current status of the research related to RTI. The current research related to RTI has been reviewed, and general dispersion relation has been derived under the thermal motion of electron. The perturbed densities of ions and electrons are determined using two fluid approach under the small amplitude of oscillations. The dispersion equation is derived with the help of Poisson’s equation and solved numerically to investigate the effect of various parameters on the growth rate and real frequency. It has been shown that the real frequency increases with plasma density gradient, electron temperature and the wavenumber, but magnetic field has opposite effect on it. On the other hand, the growth rate of instability increases with magnetic field and density gradient, but it decreases with electron temperature and wave number.

Publisher

IntechOpen

Reference119 articles.

1. Chandrasekhar S. Hydrodynamic And hydromagnetic Stability, Dover, 1981, first published by. England: Oxford University Press; 1961

2. Roberts MS. Fluid instabilities and transition to turbulence. Computational overview of fluid structure interaction. 2020;4(23):1-20

3. Drazin PG. Introduction to Hydrodynamic Stability (Cambridge Texts in Applied Mathematics). United Kingdom: Cambridge University Press; 2002. DOI: 10.1017/CBO9780511809064

4. Allah MO. An overview of linear and nonlinear Rayleigh-Taylor instability. General Mathematics Notes. 2014;20(1):67-76

5. Francois C. Hydrodynamic Instabilities. United Kingdom: Cambridge University Press; 2011. DOI: 10.1017/CBO9780511975172

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3