Velocity Planning via Model-Based Reinforcement Learning: Demonstrating Results on PILCO for One-Dimensional Linear Motion with Bounded Acceleration

Author:

Liao Hsuan-Cheng,Chou Han-Jung,Liu Jing-Sin

Abstract

The time-optimal control problem (TOCP) has faced new practical challenges, such as those from the deployment of agile autonomous vehicles in diverse uncertain operating conditions without accurate system calibration. In this study to meet a need to generate feasible speed profiles in the face of uncertainty, we exploit and implement probabilistic inference for learning control (PILCO), an existing sample-efficient model-based reinforcement learning (MBRL) framework for policy search, to a case study of TOCP for a vehicle that was modeled as a constant input-constrained double integrator with uncertain inertia subject to uncertain viscous friction. Our approach integrates learning, planning, and control to construct a generalizable approach that requires minimal assumptions (especially regarding external disturbances and the parametric dynamics model of the system) for solving TOCP approximately as the perturbed solutions close to time-optimality. Within PILCO, a Gaussian Radial basis functions is implemented to generate control-constrained rest-to-rest near time-optimal vehicle motion on a linear track from scratch with data-efficiency in a direct way. We briefly introduce the importance of the applications of PILCO and discuss the learning results that PILCO would actually converge to the analytical solution in this TOCP. Furthermore, we execute a simulation and a sim2real experiment to validate the suitability of PILCO for TOCP by comparing with the analytical solution.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3