Enhancement of Heat Transfer Using Taylor Vortices in Thermal Processing for Food Process Intensification

Author:

Masuda Hayato

Abstract

We are witnessing a transition from the traditional to novel processing technologies in the food industry to address the issues regarding energy, environment, food, and water resources. This chapter first introduces the concept of food process intensification based on vortex technologies to all food engineers/researchers. Thereafter, the novel processing methods for starch gelatinization/hydrolysis and heat sterilization based on Taylor–Couette flow are reviewed. In fluid mechanics communities, the Taylor–Couette flow is well-known as a flow between coaxial cylinders with the inner cylinder rotating. Recently, this unique flow has been applied in food processing. In starch processing, enhanced heat transfer through Taylor vortex flow significantly improves gelatinization. In addition, effective and moderate mixing leads to an increase in the reducing sugar yield. In sterilization processing, the enhanced heat transfer also intensifies the thermal destruction of Clostridium botulinum. However, a moderate heat transfer should be ensured because excessive heat transfer also induces thermal destruction of the nutritional components. The Taylor–Couette flow is only an example considered here. There are various flows that intensify the heat/mass transfer and mixing in food processing. It is expected that this chapter will stimulate the development of food processing based on fluid technologies, toward food process intensification.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3