Abstract
A wealth of evidence accumulated over the last two decades has unambiguously linked lipid rafts to neurodegenerative diseases, in particular to Alzheimer’s disease (AD). These microdomains are highly dynamic membrane platforms with differentiated physicochemical and molecular properties compared to the surrounding membrane microenvironment, and are the locus for a number of central processes in neuronal physiology. Most recent evidence pinpoint to lipid rafts as main players in AD neuropathology. It is now widely accepted that lipid rafts actively participate in the processing of amyloid precursor protein to generate amyloid beta peptides, a main component of amyloid plaques. Current evidence have highlighted the existence of severe alterations in the molecular structure and functionality of lipid rafts in the frontal cortex of human brains affected by Alzheimer’s disease. An exceptionally interesting observation is that lipid raft destabilization can be demonstrated even at the earliest stages of AD neuropathology. In the present review, we will first elaborate on the structure and function of these multifaceted subcellular structures and second to focus on the impact of their alterations in neuronal pathophysiology along the onset and progression of AD continuum.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献