Molecular and biophysical features of hippocampal “lipid rafts aging” are modified by dietary n‐3 long‐chain polyunsaturated fatty acids

Author:

Díaz Mario123ORCID,Pereda de Pablo Daniel4,Valdés‐Baizabal Catalina4,Santos Guido5,Marin Raquel46

Affiliation:

1. Department of Physics, Faculty of Sciences University of La Laguna Tenerife Spain

2. Instituto Universitario de Neurociencias (IUNE) Tenerife Spain

3. Laboratory of Membrane Physiology and Biophysics, School of Sciences University of La Laguna Tenerife Spain

4. Laboratory of Cellular Neurobiology Department of Basic Medical Sciences, Faculty of Health Sciences University of La Laguna Tenerife Spain

5. Department of Biochemistry, Microbiology, Cellular Biology and Genetics, School of Sciences University of La Laguna Tenerife Spain

6. Associate Research Unit ULL‐CSIC “Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases” Tenerife Spain

Abstract

Abstract“Lipid raft aging” in nerve cells represents an early event in the development of aging‐related neurodegenerative diseases, such as Alzheimer's disease. Lipid rafts are key elements in synaptic plasticity, and their modification with aging alters interactions and distribution of signaling molecules, such as glutamate receptors and ion channels involved in memory formation, eventually leading to cognitive decline. In the present study, we have analyzed, in vivo, the effects of dietary supplementation of n‐3 LCPUFA on the lipid structure, membrane microviscosity, domain organization, and partitioning of ionotropic and metabotropic glutamate receptors in hippocampal lipid raffs in female mice. The results revealed several lipid signatures of “lipid rafts aging” in old mice fed control diets, consisting in depletion of n‐3 LCPUFA, membrane unsaturation, along with increased levels of saturates, plasmalogens, and sterol esters, as well as altered lipid relevant indexes. These changes were paralleled by increased microviscosity and changes in the raft/non‐raft (R/NR) distribution of AMPA‐R and mGluR5. Administration of the n‐3 LCPUFA diet caused the partial reversion of fatty acid alterations found in aged mice and returned membrane microviscosity to values found in young animals. Paralleling these findings, lipid rafts accumulated mGluR5, NMDA‐R, and ASIC2, and increased their R/NR proportions, which collectively indicate changes in synaptic plasticity. Unexpectedly, this diet also modified the lipidome and dimension of lipid rafts, as well as the domain redistribution of glutamate receptors and acid‐sensing ion channels involved in hippocampal synaptic plasticity, likely modulating functionality of lipid rafts in memory formation and reluctance to age‐associated cognitive decline.

Funder

Agencia Canaria de Investigación, Innovación y Sociedad de la Información

Ministerio de Ciencia e Innovación

Publisher

Wiley

Subject

Cell Biology,Aging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3