An Explainable Machine Learning Model for Early Prediction of Sepsis Using ICU Data

Author:

Nesaragi Naimahmed,Patidar Shivnarayan

Abstract

Early identification of individuals with sepsis is very useful in assisting clinical triage and decision-making, resulting in early intervention and improved outcomes. This study aims to develop an explainable machine learning model with the clinical interpretability to predict sepsis onset before 6 hours and validate with improved prediction risk power for every time interval since admission to the ICU. The retrospective observational cohort study is carried out using PhysioNet Challenge 2019 ICU data from three distinct hospital systems, viz. A, B, and C. Data from A and B were shared publicly for training and validation while sequestered data from all three cohorts were used for scoring. However, this study is limited only to publicly available training data. Training data contains 15,52,210 patient records of 40,336 ICU patients with up to 40 clinical variables (sourced for each hour of their ICU stay) divided into two datasets, based on hospital systems A and B. The clinical feature exploration and interpretation for early prediction of sepsis is achieved using the proposed framework, viz. the explainable Machine Learning model for Early Prediction of Sepsis (xMLEPS). A total of 85 features comprising the given 40 clinical variables augmented with 10 derived physiological features and 35 time-lag difference features are fed to xMLEPS for the said prediction task of sepsis onset. A ten-fold cross-validation scheme is employed wherein an optimal prediction risk threshold is searched for each of the 10 LightGBM models. These optimum threshold values are later used by the corresponding models to refine the predictive power in terms of utility score for the prediction of labels in each fold. The entire framework is designed via Bayesian optimization and trained with the resultant feature set of 85 features, yielding an average normalized utility score of 0.4214 and area under receiver operating characteristic curve of 0.8591 on publicly available training data. This study establish a practical and explainable sepsis onset prediction model for ICU data using applied ML approach, mainly gradient boosting. The study highlights the clinical significance of physiological inter-relations among the given and proposed clinical signs via feature importance and SHapley Additive exPlanations (SHAP) plots for visualized interpretation.

Publisher

IntechOpen

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3