Author:
Amirsoleimani Amirali,Liu Tony,Alibart Fabien,Eccofey Serge,Chang Yao-Feng,Drouin Dominique,Genov Roman
Abstract
In this Chapter, we review the recent progress on resistance drift mitigation techniques for resistive switching memory devices (specifically memristors) and its impact on the accuracy in deep neural network applications. In the first section of the chapter, we investigate the importance of soft errors and their detrimental impact on memristor-based vector–matrix multiplication (VMM) platforms performance specially the memristance state-drift induced by long-term recurring inference operations with sub-threshold stress voltage. Also, we briefly review some currently developed state-drift mitigation methods. In the next section of the chapter, we will discuss an adaptive inference technique with low hardware overhead to mitigate the memristance drift in memristive VMM platform by using optimization techniques to adjust the inference voltage characteristic associated with different network layers. Also, we present simulation results and performance improvements achieved by applying the proposed inference technique by considering non-idealities for various deep network applications on memristor crossbar arrays. This chapter suggests that a simple low overhead inference technique can revive the functionality, enhance the performance of memristor-based VMM arrays and significantly increases their lifetime which can be a very important factor toward making this technology as a main stream player in future in-memory computing platforms.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献