Abstract
Food polyphenols constitute a large family of substances with beneficial properties in a large group of communicable and non-communicable diseases. These compounds support and improve the body’s defences against oxidative stress and are helpful in the prevention of pathologies related to metabolic syndrome. Furthermore, they exhibit anti-inflammatory, antiviral, and antimicrobial properties. This chapter draws attention to certain nutritional components such as hesperidin and quercetin, which are emerging as good candidates for a complementary beneficial effect in the case of diseases caused by viruses, including COVID-19. These nutraceuticals have a complex mechanism of action, which involves both cellular defence against oxidative stress and the modulation of inflammation, which although normally is a defence, repair and activation mechanism of the immune system, it can elude its controls and become a systemic and destructive pathology (cytokine storm, respiratory distress syndrome). Furthermore, recent in silico simulation tests suggest that both hesperidin and quercetin may interfere with SARS-CoV-2 by binding to cell receptors and the proteolytic enzymes involved in its replication. In addition to the inhibitory effects on the virus at cellular level, the two flavonoids can have indirect effects in respiratory infectious diseases as they prevent or improve metabolic and vascular comorbidities that can complicate the clinical course. This brief review focuses on biochemical and pharmacological mechanisms of action of polyphenols in the context of the revaluation of dietary approaches to the prevention and treatment of infectious diseases caused by viruses, with a special application to COVID-19.
Reference170 articles.
1. Aune D, Keum N, Giovannucci E, Fadnes LT, Boffetta P, Greenwood DC, et al. Dietary intake and blood concentrations of antioxidants and the risk of cardiovascular disease, total cancer, and all-cause mortality: a systematic review and dose-response meta-analysis of prospective studies. Am J Clin Nutr. 2018;108(5):1069-1091.
2. Wallace TC, Bailey RL, Blumberg JB, Burton-Freeman B, Chen CO, Crowe-White KM, et al. Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Crit Rev Food Sci Nutr. 2019;1-38.
3. Zhang Q , Yang W, Liu J, Liu H, Lv Z, Zhang C, et al. Identification of Six Flavonoids as Novel Cellular Antioxidants and Their Structure-Activity Relationship. Oxid Med Cell Longev. 2020;2020:4150897.
4. Spiegel M, Andruniów T, Sroka Z. Flavones' and Flavonols' Antiradical Structure-Activity Relationship-A Quantum Chemical Study. Antioxidants (Basel). 2020;9(6).
5. Zhao J, Huang L, Sun C, Zhao D, Tang H. Studies on the structure-activity relationship and interaction mechanism of flavonoids and xanthine oxidase through enzyme kinetics, spectroscopy methods and molecular simulations. Food Chem. 2020;323:126807.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献