Infrared Nano-Focusing by a Novel Plasmonic Bundt Optenna

Author:

Awad Ehab

Abstract

Infrared optical detection devices such as photodetectors, solar cells, cameras, and microbolometers are becoming smaller in size with a tiny active area in the range of a few micrometers or even nanometers. That comes at the expense of a smaller aperture area of the device, and in turn inefficient collection of infrared energy. Therefore, infrared plasmonic optical antennas are becoming essential to efficiently collect optical energy from free space and concentrate it down to the device’s tiny area. However, it is desirable to develop plasmonic antennas with a broad bandwidth, polarization insensitivity, wide field-of-view, and reasonable plasmonic losses. That ensures collection of most incident infrared radiation and enhancement of power absorption efficiency. In this chapter, some types of plasmonic antennas are explored with an emphasis on innovative type of optical antenna called Bundt Optenna. We investigate Bundt Optenna design and optimization. This antenna has a novel shape that looks like a Bundt baking pan and it is made of gold. Several Bundt unit cells can be arranged in a periodic array that is placed on top of a thin-film infrared absorbing layer. The Bundt Optenna utilizes surface plasmons to squeeze both electric and magnetic fields of infrared radiation down to a 50 nm wide area, thus enhancing absorption efficiency within an underneath thin-film layer. The Optenna demonstrates polarization insensitivity and ultra-broad bandwidth with a large fractional bandwidth within the near, short-wave, and mid-wave infrared bands. It also shows a remarkable enhanced power absorption efficiency and a wide field-of-view.

Publisher

IntechOpen

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3