Graphene Metamaterial Embedded within Bundt Optenna for Ultra-Broadband Infrared Enhanced Absorption

Author:

Awad EhabORCID

Abstract

Graphene is well-known for its extraordinary physical properties such as broadband optical absorption, high electron mobility, and electrical conductivity. All of these make it an excellent candidate for several infrared applications such as photodetection, optical modulation, and optical sensing. However, a standalone monolayer graphene still suffers from a weak infrared absorption, which is ≅2.3%. In this work, a novel configuration of graphene metamaterial embedded inside Bundt optical-antenna (optenna) is demonstrated. It can leverage the graphene absorption up to 57.7% over an ultra-wide wavelength range from 1.26 to 1.68 µm (i.e., Bandwidth ≅ 420 nm). This range covers the entire optical communication bands of O, E, S, C, L, and U. The configuration mainly consists of a Bundt-shaped plasmonic antenna with a graphene metamaterial stack embedded within its nano-wide waveguide that has a 1.5 µm length. The gold average plasmonic loss is ≅25%. This configuration can enhance graphene ultra-broadband absorption through multiple mechanisms. It can nano-focus the infrared radiation down to a 50 nm spot on the graphene metamaterial, thus yielding an 11.5 gain in optical intensity (i.e., 10.6 dB). The metamaterial itself has seven concentric cylindrical graphene layers separated by silicon dioxide thin films, thus each layer contributes to the overall absorption. The focused infrared propagates tangential to the graphene metamaterial layers (i.e., grazing propagation), and thus maximizes the light–graphene interaction length. In addition, each graphene layer experiences a double-face exposure to the nano-focused propagating spot, which increases each layer’s absorption. This configuration is compact and polarization-insensitive. The estimated maximum absorption enhancement compared to the standalone monolayer graphene was 25.1 times (i.e., ≅4 dB). The estimated maximum absorption coefficient of the graphene stack was 5700 cm−1, which is considered as one of the record-high reported coefficients up to date.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3