Multiplicity in the Genes of Carbon Metabolism in Antibiotic-Producing Streptomycetes

Author:

Takahashi Toshiko,Alanís Jonathan,Hernández Polonia,Elena Flores María

Abstract

Streptomycetes exhibit genetic multiplicity, like many other microorganisms, and redundancy occurs in many of the genes involved in carbon metabolism. The enzymes of the glycolytic pathway presenting the greatest multiplicity were phosphofructokinase, fructose 1,6-bisphosphate aldolase, glyceraldehyde-3-phosphate dehydrogenase, and pyruvate kinase. The genes that encode citrate synthase and subunits of the succinate dehydrogenase complex are the ones that show the greatest multiplicity, while in the phosphoenolpyruvate-pyruvate-oxaloacetate node, only malic enzymes and pyruvate phosphate dikinase present two copies in some Streptomyces. The extra DNA from these multiple gene copies can be more than 50 kb, and the question arises whether all of these genes are transcribed and translated. As far as we know, there is few information about the transcription of these genes in any of this Streptomyces, nor if any of the activities that are encoded by a single gene could be limiting both for growth and for the formation of precursors of the antibiotics produced by these microorganisms. Therefore, it is important to study the transcription and translation of genes involved in carbon metabolism in antibiotic-producing Streptomyces growing on various sugars.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3