Expanding Primary Metabolism Helps Generate the Metabolic Robustness To Facilitate Antibiotic Biosynthesis in Streptomyces

Author:

Schniete Jana K.1ORCID,Cruz-Morales Pablo2,Selem-Mojica Nelly2,Fernández-Martínez Lorena T.3,Hunter Iain S.1,Barona-Gómez Francisco2,Hoskisson Paul A.1ORCID

Affiliation:

1. Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom

2. Evolution of Metabolic Diversity Laboratory, Langebio, Guanajuato, Mexico

3. Department of Biology, Edge Hill University, Ormskirk, Lancashire, United Kingdom

Abstract

ABSTRACT The expansion of the genetic repertoire of an organism by gene duplication or horizontal gene transfer (HGT) can aid adaptation. Streptomyces bacteria are prolific producers of bioactive specialized metabolites that have adaptive functions in nature and have found extensive utility in human medicine. While the biosynthesis of these specialized metabolites is directed by dedicated biosynthetic gene clusters, little attention has been focused on how these organisms have evolved robustness in their genomes to facilitate the metabolic plasticity required to provide chemical precursors for biosynthesis during the complex metabolic transitions from vegetative growth to specialized metabolite production and sporulation. Here, we examine genetic redundancy in actinobacteria and show that specialized metabolite-producing bacterial families exhibit gene family expansion in primary metabolism. Focusing on a gene duplication event, we show that the two pyruvate kinases in the genome of Streptomyces coelicolor arose by an ancient duplication event and that each has evolved altered enzymatic kinetics, with Pyk1 having a 20-fold-higher k cat than Pyk2 (4,703 s −1 compared to 215 s −1 , respectively), and yet both are constitutively expressed. The pyruvate kinase mutants were also found to be compromised in terms of fitness compared to wild-type Streptomyces . These data suggest that expanding gene families can help maintain cell functionality during metabolic perturbation such as nutrient limitation and/or specialized metabolite production. IMPORTANCE The rise of antimicrobial-resistant infections has prompted a resurgence in interest in understanding the production of specialized metabolites, such as antibiotics, by Streptomyces . The presence of multiple genes encoding the same enzymatic function is an aspect of Streptomyces biology that has received little attention; however, understanding how the metabolic expansion influences these organisms can help enhance production of clinically useful molecules. Here, we show that expanding the number of pyruvate kinases enables metabolic adaptation, increases strain fitness, and represents an excellent target for metabolic engineering of industrial specialized metabolite-producing bacteria and the activation of cryptic specialized metabolites.

Funder

Scottish University Life Science Alliance

Conacyt

British Council

RCUK | Biotechnology and Biological Sciences Research Council

RCUK | Natural Environment Research Council

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3