Many-Electron Problem in an Atomic Lattice Reduced Exactly to Two-Particle Pseudo-Electron Excitations: Key to Alternative First-Principles Methods

Author:

Kussow Adil-Gerai

Abstract

Prediction of properties of solids (semiconductors) is based almost entirely on the first-principles methods. The first principles theories are far from being perfect and new schemes are developing. In this study, we do not follow the traditional one-particle-in-effective-field concept. Instead, all Coulomb interactions between particles are treated in their original form, i.e., particle-particle discrete interactions. Two-particles Coulomb excitations theory in a crystal lattice is proposed, along with a method for calculations of physical measurables. Most important, the relevant particles are not electrons but pseudo-electrons with both the Coulomb interaction mode and the effective mass different from those of electrons. The unitary transformation represents the many-body system as an ensemble of two-pseudo-electron excitations without neglection of the terms in a Hamiltonian. The many-particle wave function, being derived in a non-trivial two-particle form, ensures a full description of exchange-correlation and screening effects, for both ground and excited states. As an example, the energy of a many-electron system and the quasiparticle energies are expressed in an elegant integral closed-form and compared with the Density Functional Theory. The proposed scheme possibly opens a new route toward the numerical evaluation of properties of many-particle systems.

Publisher

IntechOpen

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3