Real-Time Sensory Information for Remote Supervision of Autonomous Agricultural Machines

Author:

D. Mann Daniel,Edet Uduak,Green Mitchell,Folorunsho Olayinka,Simundsson Avery,Ogidi Franklin

Abstract

The concept of the driverless tractor has been discussed in the scientific literature for decades and several tractor manufacturers now have prototypes being field-tested. Although farmers will not be required to be physically present on these machines, it is envisioned that they will remain a part of the human-automation system. The overall efficiency and safety to be attained by autonomous agricultural machines (AAMs) will be correlated with the effectiveness of information sharing between the AAM and the farmer through what might be aptly called an automation interface. In this supervisory scenario, the farmer would be able to both receive status information and send instructions. In essence, supervisory control of an AAM is similar to the current scenario where farmers physically present on their machines obtain status information from displays integrated into the machine and from general sensory information that is available due to their proximity to the operating machine. Therefore, there is reason to expect that real-time sensory information would be valuable to the farmer when remotely supervising an AAM through an automation interface. This chapter will provide an overview of recent research that has been conducted on the role of real-time sensory information to the task of remotely supervising an AAM.

Publisher

IntechOpen

Reference71 articles.

1. Scholtz J. Theory and evaluation of human robot interactions. In: Proceedings of the 36th Annual Hawaii International Conference IEEE; 2003

2. Berenstein R, Halevi IB, Edan Y. A remote interface for a human-robot cooperative vineyard sprayer. In: 11th International Conference on Precision Agriculture, Indianapolis, USA; 2012. p. 15-18

3. Bechar A, Vigneault C. Agricultural robots for field operations: concepts and components. Biosystems Engineering. 2016;149:94-111

4. Adamides G, Katsanos C, Parmet Y, Christou G, Xenos M, Hadzilacos T, Edan Y. HRI usability evaluation of interaction modes for a teleoperated agricultural robotic sprayer. Applied Ergonomics. 2017;62:237-246

5. Taylor RM. Human automation integration for supervisory control of UAVs. In: Virtual Media for Military Applications Meeting Proceedings RTO-MP-HFM, Paper 12; Neuilly-sur-Seine, France. 2006. p. 12.1-12.10

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3