Abstract
For centuries, sugar has been virtually the only commercialized product derived from sugarcane. Traditionally, sugarcane breeding programs focused exclusively on the increase of the sucrose content, abandoning characteristics such as biomass yield and fiber content. Recently, sugarcane gained prominence also for its potential in terms of biomass production. As a result, some sugarcane breeding programs began to look for ways to increase fiber content and biomass yield instead of sugar content. In the 1980s, Alexander created the concept of energy cane. Here we review the changes in the sugarcane breeding programs related to enhanced fiber instead of sugar content. Compare the energy generation of energy cane with other biomass crops. Also, the recent changes in the biomass and biofuels scenario, focusing on topics as 2G ethanol and the RenovaBio program, from the Brazilian Government, which will give carbon credits to biofuels. Although several studies demonstrate its potential for biomass production, energy cane is still a new technology on an experimental scale and has been struggling to reach and establish on a commercial scale. However, policies and new technologies are increasing the demand for lignocellulosic material. Therefore, this chapter connects these points and shows the potential of this new plant material for the coming years.
Reference74 articles.
1. FAOSTAT. Beans, dry [Internet]. 2017 [cited 2020 Jan 7]. Available from: http://www.fao.org/faostat/en/#data/QC
2. Sreenivasan T V., Nair N V. Catalogue on Sugarcane Genetic Resources III. Saccharum officinarum L. 1st ed. Coimbatore, India: ICAR; 1991.
3. Matsuoka S, Bressiani J, Maccheroni W, Fouto I. Sugarcane bioenergy. In: Sugarcane: Agricultural Production, Bioenergy and Ethanol. Elsevier Inc.; 2015. p. 383-405.
4. Rao PS, Davis H, Simpson C. New sugarcane varieties and year round sugar and ethanol production with bagasse-based cogeneration in Barbados and Guyana. XXVI Congr Int Soc Sugar Cane Technol ICC, Durban, South Africa, 29 July - 2 August, 2007. 2007;1169-76.
5. Hofer R. Sugar- and Starch-Based Biorefineries. Ind Biorefineries White Biotechnol Elsevier, Amsterdam. 2015;(Chapter 4A):157-235.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献