Industrial Fluids Components Health Management Using Deep Learning

Author:

G. Biradar Vidyadevi,Nagaraj H.C.,Mohan S.G.,Kumar Pareek Piyush

Abstract

The fatigue state of fluid components such as valves, metal surfaces in gas or oil carrying pipelines is important to monitor on regular basis and plan for repair work to avoid risks associated with them, this becomes more crucial when the pipelines are supplying hazard prone fluids. There exist methods for detection of corroded surfaces, scratches and fractures in pipelines, valves, and regulators etcetera. The conventional methods are based on sensors and chemical analysis methods. There are challenges with conventional methods pertaining to the desired metric of scalability and disadvantages of these methods is they are contact based and destructive methods. Therefore, to overcome these limitations of existing methods there is a need for development of non-contact and nondestructive methods. The recent advancements in Artificial Intelligence technology in every domain including health care monitoring, agriculture sector, defense applications and civilian applications etc., have shown that deep learning methods can be explored in industrial applications to develop fault tolerant systems which help fluid components state of health monitoring through computer vision. In this chapter proposes various methods for analysis of health state of fluid components using deep convolutional neural networks and suggest the best models for these applications.

Publisher

IntechOpen

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3