Condition-Based Maintenance with Reinforcement Learning for Dry Gas Pipeline Subject to Internal Corrosion

Author:

Mahmoodzadeh Zahra,Wu Keo-Yuan,Lopez Droguett Enrique,Mosleh Ali

Abstract

Gas pipeline systems are one of the largest energy infrastructures in the world and are known to be very efficient and reliable. However, this does not mean they are prone to no risk. Corrosion is a significant problem in gas pipelines that imposes large risks such as ruptures and leakage to the environment and the pipeline system. Therefore, various maintenance actions are performed routinely to ensure the integrity of the pipelines. The costs of the corrosion-related maintenance actions are a significant portion of the pipeline’s operation and maintenance costs, and minimizing this large cost is a highly compelling subject that has been addressed by many studies. In this paper, we investigate the benefits of applying reinforcement learning (RL) techniques to the corrosion-related maintenance management of dry gas pipelines. We first address the rising need for a simulated testbed by proposing a test bench that models corrosion degradation while interacting with the maintenance decision-maker within the RL environment. Second, we propose a condition-based maintenance management approach that leverages a data-driven RL decision-making methodology. An RL maintenance scheduler is applied to the proposed test bench, and the results show that applying the proposed condition-based maintenance management technique can reduce up to 58% of the maintenance costs compared to a periodic maintenance policy while securing pipeline reliability.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3