QoS Control in Remote Robot Operation with Force Feedback

Author:

Huang Pingguo,Ishibashi Yutaka

Abstract

Recently, many researchers focus on studies of remote robot operation with force feedback. By using force feedback, since users can touch remote objects and feel the shape, weight, and softness of each object, the efficiency and accuracy of operation can be largely improved. However, when the haptic information such as force and/or position information is transmitted over a QoS (Quality of Service) non-guaranteed network like the Internet, QoE (Quality of Experience) and stability may seriously deteriorate. Therefore, it is important to carry out QoS control and stabilization control together to solve the problems. In this chapter, we mainly focus on QoS control. We also introduce our remote robot system with force feedback which we constructed to study QoS control and stabilization control by experiment. In the system, a user operates a remote industrial robot with a force sensor by using a local haptic interface device while monitoring the robot operation by a video camera. We handle two types of operation; operation with a single remote robot system and that between two remote robot systems. We explain several types of QoS control which we have proposed so far for remote robot operation with force feedback. Finally, we discuss the challenges and future directions of QoS control in remote robot operation with force feedback.

Publisher

IntechOpen

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of Local Lag on Reaction Force in Networked Virtual Environment with Haptic Sense;2024 IEEE Conference on Computer Applications (ICCA);2024-03-16

2. Models of Quality of Service Indicators for Traffic (Robots-Manipulators);Telecom IT;2022-12-23

3. Implementation and Evaluation of Telehaptics over Long Term Evolution (4G) - Towards 5G Powered Telesurgery;2022 IEEE Conference on Standards for Communications and Networking (CSCN);2022-11-28

4. Cooperation among Humans and Robots in Remote Robot Systems with Force Feedback;Human-Robot Interaction - Perspectives and Applications [Working Title];2022-10-04

5. Enhanced Robot Position Control Using Force Information for Mobile Robots : Influences of Obstacles on Cooperative Work;2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN);2021-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3