Author:
Vrančić Damir,Huba Mikuláš
Abstract
The main tasks of control in various industries are either tracking the setpoint changes or rejecting the process disturbances. While both aim at maintaining the process output at the desired setpoint, the controller parameters optimised for setpoint tracking are generally not suitable for optimal disturbance rejection. The overall control performance can be improved to some extent by using simpler 2-DOF PID controllers. Such a controller structure allows the disturbance rejection to be optimised, while it also improves the setpoint tracking performance with additional controller parameters (usually through the setpoint weighting factors). Since such 2-DOF structures are usually relatively simple, the optimization of tracking performance is usually limited to the reduction of process overshoots instead of achieving an optimal (fast) tracking response. In this chapter, an alternative approach is presented in which the parameters of the PID controller are optimised for reference tracking, while the performance of the disturbance rejection is substantially increased by introducing a simple disturbance estimator approach. The mentioned estimator requires adding two simple blocks to the PID controller. The blocks are the second-order transfer functions whose parameters, including the PID controller parameters, can be calculated analytically from the process characteristic areas (also called process moments). The advantage of such an approach is that the mentioned areas can be analytically calculated directly from the process transfer function (of any order with time delay) or from the time response of the process when the steady state of the process is changed. Both of the above calculations are absolutely equivalent. Moreover, the output noise of the controller is under control as it is considered in the design of the controller and compensator. The closed loop results on several process models show that the proposed method with disturbance estimator has excellent tracking and disturbance rejection performance. The proposed controller structure and tuning method also compare favourably with some existing methods based on non-parametric description of the process.
Reference31 articles.
1. Åström, K.J. and Hägglund, T. (1995). PID controllers: Theory, Design, and Tuning, 2nd Edition. Instrument Society of America
2. Åström, K.J., Panagopoulos, H. and Hägglund, T. (1998). Design of PI Controllers based on Non-Convex Optimization. Automatica, 34 (5), pp. 585–601
3. Garcia, C. E. and Morari, M. (1982). Internal model control. A unifying review and some new results. Ind. Eng. Chem. Process Des. Dev. Vol. 21, pp. 308–323
4. O’Dwyer A. (2009). Handbook of PI and PID controller tuning rules; 3rd Edition. Imperial College Press
5. Freire H., Moura Oliveira P., Solteiro E. P. and Bessa M., (2014), Many-Objective PSO PID Controller Tuning, Controlo 2014, Porto, Portugal pp. 183-192
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献