RRT*-SMART: A Rapid Convergence Implementation of RRT*

Author:

Nasir Jauwairia12,Islam Fahad12,Malik Usman1,Ayaz Yasar1,Hasan Osman2,Khan Mushtaq1,Muhammad Mannan Saeed13

Affiliation:

1. Robotics & Intelligent Systems Engineering (RISE) Lab, Department of Robotics and Artificial Intelligence, School of Mechanical & Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan

2. Department of Electrical Engineering, School of Electrical Engineering & Computer Sciences (SEECS), National University of Sciences and Technology (NUST), Islamabad, Pakistan

3. Department of Electronic Engineering, College of Engineering, Hanyang University, Seoul, South Korea

Abstract

Many sampling based algorithms have been introduced recently. Among them Rapidly Exploring Random Tree (RRT) is one of the quickest and the most efficient obstacle free path finding algorithm. Although it ensures probabilistic completeness, it cannot guarantee finding the most optimal path. Rapidly Exploring Random Tree Star (RRT*), a recently proposed extension of RRT, claims to achieve convergence towards the optimal solution thus ensuring asymptotic optimality along with probabilistic completeness. However, it has been proven to take an infinite time to do so and with a slow convergence rate. In this paper an extension of RRT*, called as RRT*-Smart, has been prposed to overcome the limitaions of RRT*. The goal of the proposecd method is to accelerate the rate of convergence, in order to reach an optimum or near optimum solution at a much faster rate, thus reducing the execution time. The novel approach of the proposed algorithm makes use of two new techniques in RRT*–Path Optimization and Intelligent Sampling. Simulation results presented in various obstacle cluttered environments along with statistical and mathematical analysis confirm the efficiency of the proposed RRT*-Smart algorithm.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 143 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3