TCM: A Vision-Based Algorithm for Distinguishing between Stationary and Moving Objects Irrespective of Depth Contrast from a UAS

Author:

Strydom Reuben12,Thurrowgood Saul1,Denuelle Aymeric13,Srinivasan Mandyam V.12

Affiliation:

1. The Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia

2. The School of Information Technology and Electrical Engineering, University of Queensland, St Lucia, QLD, Australia

3. Autonomous Systems Program, CSIRO, Pullenvale, Australia

Abstract

This paper describes an airborne vision system that is capable of determining whether an object is moving or stationary in an outdoor environment. The proposed method, coined the Triangle Closure Method (TCM), achieves this goal by computing the aircraft's egomotion and combining it with information about the directions connecting the object and the UAS, and the expansion of the object in the image. TCM discriminates between stationary and moving objects with an accuracy rate of up to 96%. The performance of the method is validated in outdoor field tests by implementation in real-time on a quadrotor UAS. We demonstrate that the performance of TCM is better than that of a traditional background subtraction technique, as well as a method that employs the Epipolar Constraint Method. Unlike background subtraction, TCM does not generate false alarms due to parallax when a stationary object is at a distance other than that of the background. It also prevents false negatives when the object is moving along an epipolar constraint. TCM is a reliable and computationally efficient scheme for detecting moving objects, which provides an additional safety layer for autonomous navigation.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3