Real-Time Obstacle Avoidance for Telerobotic Systems Based on Equipotential Surface

Author:

Li Xin1,Song Aiguo1,Li Huijun1,Lu Wei1,Mao Chen1

Affiliation:

1. School of Instrument Science and Technology, Southeast University, Nanjing, China

Abstract

Redundant manipulators offer a dual advantage of flexibility and dexterity and can be used in many civilian and military areas. However, operating such systems by teleoperation is challenging because of the redundancy and unstructured task environment, which result in the human operator suffering a huge burden when telemanipulator is facing the complicated obstacles. The existing methods usually use some off-line algorithms to solve the problem of obstacle avoidance. It is difficult for them to meet the requirements of real-time teleoperation in some unknown environment. This paper presents an on-line method for a telerobotic system to take advantage of redundancy to avoid obstacle, which is based on real-time sensor information. With this method, the human operator can focus attention on the end-effector operation regardless of the obstacle avoidance of other parts. The effectiveness and advantage of the method are well demonstrated by experiments.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3