Affiliation:
1. Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou, China
Abstract
Inspired by biological systems, we seek to achieve natural dynamics and versatile locomotion for hopping or running robots by installing a series elastic actuator (SEA) in the joints due to its compliant property, passive adaptability and energy storage. However, robots equipped with these actuators have drawbacks in terms of substantial delay and limited bandwidth in their position control, especially when a robot has to choose its foothold while it is running at a demanding speed. To solve these problems, compliance control and adaptive position/torque control are introduced to a hopping- legged robot in this paper. The compliant performance of the robot can be improved through the intrinsic property of an SEA with a torque control algorithm. Combining the kinetics model and stochastic model of a 2-DOF robot, an adaptive position control with Kalman Filtering (KF) is developed to provide rapid convergent state estimation of the load on the robotic end-effector by solving the inverse dynamics. Validating the robustness and effectiveness of the proposed algorithm on our hopping-legged robot Tigger, the experimental results show very good position-tracking and disturbance-rejection, as well as flexible interactions while operating in a complex environment.
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献