Affiliation:
1. Department of Mechanical Engineering, National Taiwan University
Abstract
To make robots coexist and share the environments with humans, robots should understand the behaviors or the intentions of humans and further predict their motions. In this paper, an A*-based predictive motion planner is represented for navigation tasks. A generalized pedestrian motion model is proposed and trained by the statistical learning method. To deal with the uncertainty, a localization, tracking and prediction framework is also introduced. The corresponding recursive Bayesian formula represented as DBNs (Dynamic Bayesian Networks) is derived for real time operation. Finally, the simulations and experiments are shown to validate the idea of this paper.
Subject
Artificial Intelligence,Computer Science Applications,Software
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献