Position-Singularity Analysis of a Class of the 3/6-Gough-Stewart Manipulators Based on Singularity-Equivalent-Mechanism

Author:

Zhou Hui12,Cao Yi123,Li Baokun1,Wu Meiping1,Yu Jinghu1,Chen Haiwei1

Affiliation:

1. School of Mechanical Engineering, Jiangnan University, China

2. The State Key Laboratory of Fluid Power and Mechatronic Systems, China

3. Laboratoire de Robotique, Université Laval, Canada

Abstract

This paper addresses the problem of identifying the property of the singularity loci of a class of 3/6-Gough-Stewart manipulators for general orientations in which the moving platform is an equilateral triangle and the base is a semiregular hexagon. After constructing the Jacobian matrix of this class of 3/6-Gough-Stewart manipulators according to the screw theory, a cubic polynomial expression in the moving platform position parameters that represents the position-singularity locus of the manipulator in a three-dimensional space is derived. Graphical representations of the position-singularity locus for different orientations are given so as to demonstrate the results. Based on the singularity kinematics principle, a novel method referred to as ‘singularity-equivalent-mechanism' is proposed, by which the complicated singularity analysis of the parallel manipulator is transformed into a simpler direct position analysis of the planar singularity-equivalent-mechanism. The property of the position-singularity locus of this class of parallel manipulators for general orientations in the principal-section, where the moving platform lies, is identified. It shows that the position-singularity loci of this class of 3/6-Gough-Stewart manipulators for general orientations in parallel principal-sections are all quadratic expressions, including a parabola, four pairs of intersecting lines and infinite hyperbolas. Finally, the properties of the position-singularity loci of this class of 3/6-Gough-Stewart parallel manipulators in a three-dimensional space for all orientations are presented.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On Spatial Systems of Bars Spherically Jointed at Their Ends and Having One Common End;Mathematics;2024-08-28

2. Qrelation: an Agent Relation-Based Approach for Multi-Agent Reinforcement Learning Value Function Factorization;ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2022-05-23

3. On the Vibrations of a Rigid Solid Hung by Kinematic Chains;Symmetry;2022-04-07

4. Sensor fusion for creating a three-dimensional model for mobile robot navigation;International Journal of Advanced Robotic Systems;2019-07

5. Singularity analysis of the 3/6 Stewart parallel manipulator using geometric algebra;Mathematical Methods in the Applied Sciences;2018-01-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3