Abstract
Remotely sensed radiation, attractive for its spatial and temporal coverage, offers a means of inferring energy deposition in fires (e.g. on soils, fuels and tree stems) but coordinated remote and in situ (in-flame) measurements are lacking. We relate remotely sensed measurements of fire radiative energy density (FRED) from nadir (overhead) radiometers on towers and the Wildfire Airborne Sensor Program (WASP) infrared camera on a piloted, fixed-wing aircraft to energy incident on in situ, horizontally oriented, wide-angle total flux sensors positioned ~0.5m above ground level. Measurements were obtained in non-forested herbaceous and shrub-dominated sites and in (forested) longleaf pine (Pinus palustris Miller) savanna. Using log–log scaling to reveal downward bias, incident energy was positively related to FRED from nadir radiometers (R2=0.47) and WASP (R2=0.50). As a demonstration of how this result could be used to describe ecological effects, we predict stem injury for turkey oak (Quercus laevis Walter), a common tree species at our study site, using incident energy inferred from remotely sensed FRED. On average, larger-diameter stems were expected to be killed in the forested than in the non-forested sites. Though the approach appears promising, challenges remain for remote and in situ measurement.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献