Affiliation:
1. USDA Forest Service, Northern Research Station, Forestry Sciences Laboratory, 359 Main Road, Delaware, OH 43015-8640, USA.
Abstract
The maximum temperatures of thermocouples, temperature-sensitive paints, and calorimeters exposed to flames in wildland fires are often called “fire temperatures” but are determined as much by the properties and deployment of the measurement devices as by the fires themselves. Rather than report device temperatures that are not generally comparable among studies, we show that maximum and time-integrated temperatures of relatively thick (4.8 mm diameter) type-K thermocouple probes (TCPs) can be calibrated to estimate fuel consumption and fire line intensity in surface fires. Although reporting standard fire characteristics is an improvement over reporting device temperatures, TCPs are not ideal instruments for monitoring surface fires, because they provide only point estimates of fire behavior and must be calibrated for different fire environments, TCP characteristics, and deployments. To illustrate how TCPs respond to fires and to point the way towards a more general calibration method, we report results from a numerical model that accurately simulated TCP response to a spreading surface fire.
Publisher
Canadian Science Publishing
Subject
Ecology,Forestry,Global and Planetary Change
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献