The extent, significance and amelioration of subsurface acidity in southern New South Wales, Australia

Author:

Condon JasonORCID,Burns Helen,Li GuangdiORCID

Abstract

Soil pH is seldom uniform with depth, rather it is stratified in layers. The soil surface (0–0.02 m) commonly exhibits relatively high pH and overlies a layer of acidic soil of 0.05–0.15 m deep, termed an acidic subsurface layer. Commercial and research sampling methods that rely on depth increments of 0.1 m either fail to detect or under report the presence or magnitude of pH stratification. The occurrence of pH stratification and the presence of acidic subsurface layers may cause the extent of acidity in NSW agricultural land to be underestimated. Though the cause of pH stratification in agricultural systems is well understood, the effect on agricultural production is poorly quantified due in part to inadequate sampling depth intervals resulting in poor identification of acidic subsurface layers. Although liming remains the best method to manage acidic soil, current practices of low pH targets (pHCa 5), inadequate application rates and no or ineffective incorporation have resulted in the continued formation of acidic subsurface layers. Regular monitoring in smaller depth increments (0.05 m), higher pH targets (pHCa > 5.5) and calculation of lime rate requirements that account for application method are required to slow or halt soil degradation by subsurface acidification. If higher pH is not maintained in the topsoil, the acidification of subsurface soils will extend further into the profile and require more expensive operations that mechanically place amendments deep in the soil. Although the use of organic amendments has shown promise to enhance soil acidity amelioration with depth, the longevity of their effect is questionable. Consequently, proactive, preventative management of topsoil pH with lime addition remains the most cost-effective solution for growers.

Publisher

CSIRO Publishing

Subject

Earth-Surface Processes,Soil Science,Environmental Science (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3