Change in soil pH, manganese and aluminium under subterranean clover pasture

Author:

Bromfield SM,Cumming RW,David DJ,Williams CH

Abstract

Changes in soil pH, manganese and aluminium as a result of long periods under subterranean clover pasture were examined in soils formed on granite, basalt and sedimentary rocks near Goulburn, New South Wales. Decreases in the pH of yellow duplex soils formed on granite, sedimentary rocks and basalt had occurred to depths of 60, 40 and 30 cm, respectively. The smaller depth of acidification in the latter two soils is considered to be due to their shallower A horizons over well buffered, clay B horizons. Under the oldest pastures (55 years) the decreases exceeded one pH unit throughout the entire sampled depth (60 cm). In some soils, under old improved pastures, calcium chloride-extractable manganese had increased to more than 20 ppm throughout the 60 cm profile and to greater than 50 ppm in the surface 10 cm. These levels are considered toxic to sensitive plant species and the highest levels may be toxic to subterranean clover. The amounts of extractable manganese in soils appear to be determined by both pH and the amounts of reactive manganese. In general, the amounts of total and reactive manganese were appreciably higher in the soils of basaltic origin. Substantial increases in extractable and exchangeable aluminium had also accompanied the decrease in pH and, in the surface 10 cm, were greatest in the soils formed on sedimentary parent materials. In many of the soils under old improved pastures, exchangeable aluminium, as a percentage of the effective cation exchange capacity, now exceeds 12%, especially in the 5-10 cm layer, and is probably harmful to sensitive species. Increases in exchangeable aluminium also occurred below the surface 10 cm and, in the granitic soils under the oldest pastures, exchangeable aluminium accounted for 30-50% of the effective cation exchange capacity throughout the 5-50 cm soil depth. The adverse changes in pH, manganese and aluminium observed in this study can be expected to continue under many improved pastures and to generate soil conditions unsuitable for many agricultural plants. The use of lime to arrest or reverse these changes seems inevitable.

Publisher

CSIRO Publishing

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3