Author:
Dyson C. B.,Conyers M. K.
Abstract
Comprehensive data on grain yield responsiveness to applications of the major nutrients nitrogen, phosphorus, potassium, sulfur in Australian cropping experiments have been assembled in the Better Fertiliser Decisions for Cropping (BFDC) National Database for scrutiny by the BFDC Interrogator. The database contains the results of individual field experiments on nutrient response that need to be collectively integrated into a model that predicts probable grain yield response from soil tests. The potential degree of grain yield responsiveness (relative yield, RY%) is related to nutrient concentration in the soil (soil test value, STV) across a range of experimental sites and conditions for each nutrient. The RY% is defined as RY = Y0/Ymax *100, where Y0 is the yield without applied nutrient, and Ymax is the yield which could be attained through adequate application of the nutrient, given sufficiency of all other nutrients. The raw data for RY and STV are transformed so that a linear regression model can be applied. The BFDC Interrogator uses the arcsine-log calibration curve (ALCC) algorithm to estimate a critical soil test value (CSTV) for a given nutrient. The CSTV is defined as the value that would, on average for the broad agronomic circumstances of the incoming crop, lead to a specified percentage of Ymax (e.g. RY = 90%) without any application of that nutrient. This paper describes the ALCC algorithm, which has been developed to ensure that such estimated CSTVs, with safeguards, are reliable and to as high a precision as is realistic.
Subject
Plant Science,Agronomy and Crop Science
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献