Measurement of Trace Elements in Marine Environmental Samples using Solution ICPMS. Current and Future Applications

Author:

Maher William,Krikowa Frank,Kirby Jason,Townsend Ashley T.,Snitch Peter

Abstract

The strengths and weaknesses of using inductively coupled plasma mass spectrometer (ICPMS) measurements of samples in solution for marine environmental analyses using real world examples is discussed. ICPMS can detect nanogram per litre concentrations of trace elements but suffers from polyatomic interferences generated from the sample matrix. Most of the routine trace elements measured in marine biological tissue and sedimentdigests, with the notable exceptions of iron, chromium, vanadium, and selenium, are not subject to severe interferences. Low recoveries of trace elements from sediments are due to the inability of extraction acids to remove trace elements such as chromium and nickel from sediment matrices. The use of ICPMS offers the advantage that elements such as phosphorus, which previously required elaborate digestion procedures and a colorimetric determination, can be rapidly determined using nitric acid digestion alone. The use of flow injection coupled with ICPMS allows on-line preconcentration of trace metals and metalloids using chelation by ion-exchange resins or hydride generation and trapping as well as separation from matrix elements. Thus, the routine determination of trace elements and inorganic and methylated arsenic, antimony, mercury, and germanium species in open-ocean waters is possible. The coupling of HPLC and GC to ICPMS allows the measurement of metal and metalloid species in biological and sediment extracts. However, extraction of unaltered species from matrices presents a challenge. Many of the species found in the environmental samples are not known and analytical standards are not available. The concurrent use of HPLC-MS is needed to confirm these species.

Publisher

CSIRO Publishing

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3