Author:
Denton M. D.,Coventry D. R.,Murphy P. J.,Howieson J. G.,Bellotti W. D.
Abstract
Inoculant rhizobia typically need to compete with naturalised soil populations of rhizobia to form legume nodules. We have used the polymerase chain reaction to test the ability of seed-inoculated rhizobia to compete with naturalised populations of rhizobia and form nodules on clover (Trifolium alexandrinum, T.�purpureum, and T. resupinatum) in alkaline soil. Clover rhizobia, Rhizobium leguminosarum bv. trifolii, were identified at the strain level using either a nif-specific RP01 primer or ERIC primers. Analysis of rhizobia isolated from nodules indicated that strain TA1 competed poorly for nodule occupancy at 2 field sites (Roseworthy and Mallala, South Australia), with the exception that it nodulated T. alexandrinum at a level of 39% at the Roseworthy site in the first year of the trial. Strains CC2483g and WSM409 successfully colonised nodules when inoculated onto a particular clover species (T. resupinatum and T. purpureum, respectively) in the first year of inoculation and persisted in the soil to form nodules in the following year. Nodules frequently contained naturalised strains of rhizobia, distinct from introduced commercial strains. Dominant isolates were specific to a field site and nodulated all 3 clover species in both years of the field trial, with each isolate occupying up to 19% of the total nodules at a field site. It was hypothesised that field isolates had a better alkaline soil tolerance conferring a greater ability to nodulate clovers under these edaphic conditions. The results indicate that soil populations of rhizobia may provide a significant constraint to the introduction of current Australian commercial clover rhizobia into alkaline soils, and a more profitable strategy may be to seek rhizobial inoculants that are adapted to these soils.
Subject
General Agricultural and Biological Sciences
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献