Competency of Rhizobial Inoculation in Sustainable Agricultural Production and Biocontrol of Plant Diseases

Author:

Kebede Erana

Abstract

The rate of growth of the global population poses a risk to food security, demanding an increase in food production. Much of the world's cultivable soils also do not have ideal farming conditions such as soil health and fertility problem and increased pest attacks, which are challenges of food production. In this perspective, there is a need to increase agricultural production using a more economically and environmentally sustainable approach. As practices of agricultural production and improvement, rhizobial inoculants represent a practically effective, ecologically safe, and economically alternative means of realizing maximum agricultural production. This review addressed how rhizobial inoculation advances agricultural production through improving plant growth, nutrient availability and uptake, and yields by enhancing bio-fixation of atmospheric nitrogen and solubilization of soil nutrients. Besides, rhizobial inoculants offer biocontrol of plant diseases by providing resistance against disease-causing pathogens or suppression of diseases. Mechanisms involved in biocontrol of plant diseases include competition for infection sites and nutrients, activation of induced systemic resistance, and production of substances such as growth hormones, antibiotics, enzymes, siderophores, hydrogen cyanide, and exo-polysaccharides. Consequently, this approach is promising as sustainable agricultural practices have yet to supplement or replace chemical fertilizers, serving as a basis for future research on sustainable agricultural production. Despite the multifunctional benefits of rhizobial inoculation, there is a variation in the implementation of this practice by farmers. Therefore, researchers should work on eradicating farmers' constraints in using rhizobia, and future studies should be concentrated toward the methods of improving inoculant quality and promotion of the technology.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Reference107 articles.

1. Efficiency of Rhizobium inoculation and P fertilization in enhancing nodulation, seed yield and phosphorous use efficiency by field grown soybean under hilly region of Rawalakot Azad Jammu and Kashmir, Pakistan. J;Abbasi;Plant Nutr,2010

2. History of Rhizobia inoculants use for grain legumes improvement in Nigeria—the journey so far;Abdullahi;N,2013

3. Isolation and characterization of rhizobia from rhizospher and root nodule of cowpea, elephant and lab lab plants;Abrar;Int. J. Novel Res. Interdisciplinary Stud.,2017

4. Nutrient limitation on terrestrial plant growth–modelling the interaction between nitrogen and phosphorus;Agren;New Phytol.,2012

5. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective;Ahemad;J. King Saud Univ. Sci.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3