Vapour pressure deficit aids the interpretation of cotton canopy temperature response to water deficit

Author:

Conaty Warren C.,Mahan James R.,Neilsen James E.,Constable Greg A.

Abstract

Crop canopy temperature (Tc) is coupled with transpiration, which is a function of soil and atmospheric conditions and plant water status. Thus, Tc has been identified as a real-time, plant-based tool for crop water stress detection. Such plant-based methods theoretically integrate the water status of both the plant and its environment. However, previous studies have highlighted the limitations and difficulty of interpreting the Tc response to plant and soil water stress. This study investigates the links between cotton Tc, established measures of plant water relations and atmospheric vapour pressure deficit (VPDa). Concurrent measures of carbon assimilation (A), stomatal conductance (gs), leaf water potential (Ψl), soil water (fraction of transpirable soil water (FTSW)) and Tc were conducted in surface drip irrigated cotton over two growing seasons. Associations between A, gs, Ψl, FTSW and Tc are presented, which are significantly improved with the inclusion of VPDa. It was concluded that utilising the strong associations between Ψl, VPDa and Tc, an adjustment of 1.8°C for each unit of VPDa should be made to the critical Tc for irrigation. This will improve the precision of irrigation in Tc based irrigation scheduling protocols. Improved accuracy in water stress detection with Tc, and an understanding of the interaction the environment plays in this response, can potentially improve the efficiency of irrigation.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3