Hydraulic conductance of intact plants of two contrasting sorghum lines, SC15 and SC1205

Author:

Choudhary Sunita,Sinclair Thomas R.,Prasad P. V. Vara

Abstract

Low plant hydraulic conductance has been hypothesised as an approach to decrease the rate of soil water use, resulting in soil water conservation for use during late season water deficits. The impact of leaf hydraulic conductance (Kleaf) on water use characteristics was explored by comparing two sorghum (Sorghum bicolor (L.) Moench) genotypes that had been found to differ in Kleaf. Genotype SC15 had a much lower leaf conductance than genotype SC1205. Four sets of experiments were undertaken to extend the comparison to the impact of differences in Kleaf on the plant water budget. (1) Measurements of hydraulic conductance of intact plants confirmed that leaf conductance of SC15 was lower than that of SC1205. (2) The low leaf conductance of SC15 was associated with a decrease in transpiration during soil drying at a higher soil water content than that of SC1205. (3) SC15 had a restricted transpiration rate at vapour pressure deficits (VPD) above 2.1 kPa, whereas SC1205 did not. (4) Treatment with aquaporin inhibitors showed substantial differences in the sensitivity of the transpiration response between the genotypes. These results demonstrated that low Kleaf in SC15 was associated with conservative water use by restricting transpiration at higher soil water content during soil drying and under high VPD. Tests with inhibitors indicate that these differences may be linked to differences between their aquaporin populations. The differences between the two genotypes indicated that the traits exhibited by SC15 would be desirable in environments where soil water deficits develop.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3